ABSTRACTS

THERMOPHYSICAL PROPERTIES OF CARBON DIOXIDE
ALONG THE LIQUID -~ VAPOR EQUILIBRIUM LINES

V. V. Altunin UDC 66-971.661.97

The essential thermophysical properties of liquid and gaseous CO, along the saturation lines at T
= 216-304°K are tabulated here in detail, The tables list 12 guantities (pg, p, Cp Ty By vy My v, Pr, g, 0,
A) and cover almost the entire temperature range from the triple point (T, = 216.56°K) to the critical point
(To = 304.2°K).

The tables were calculated by equations which had been derived in [1, 2] on the basis of a statistical
evaluation of most reliable test data on the thermophysical properties of CO, along the phase-equilibrium
lines and within the single-phase region at temperatures from T, to 1300°K and pressures P from 1 to
3000 bars. These equations had been set up by nonconventional methods in the form:
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The values of the function in the standard form were taken from [3].

The errors of the tabulated values were estimated in terms of the standard deviations from test data,

NOTATION
ps  is the saturated-vapor pressure;
p is the density;
p is the specific heat at constant pressure;
r is the heat of transformation;
B is the thermal expansivity;
v is the temperature coefficient of pressure;
i is the dynamic viscosity;
v is the kinematic viscosity;
A is the thermal conductivity;
a is the thermal diffusivity;
Pr  is the Prandtl number;
o is the coefficient of surface tension;
T is the referred temperature,
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COMPOSITE MEASUREMENT OF BUBBLE
CHARACTERISTICS IN A LIQUID

E. D. Kurtsman and L. Ya. Suvorov UDC 536.423.1

Certain tests where the motion of bubbles in a liquid was recorded (see, e.g., [1, 2]) did not include
a simultaneous composite recording of bubble motion and thermal parametfers. In view of the importance
of such tests for the study of boiling characteristics during uniform-over-the-volume heating of liquids,
a test stand has been developed [3] including a cinematographic camera and a multiloop oscillograph with
probes and transducers for measuring the temperature along the bubble path, the density of the vapor-water
mixture, of the power supplied to the liquid, and for counting the number of vapor bubbles (by recording the
current of the bubble probe). In addition, various auxiliary signals were recorded for the interpretation
and the comparative evaluation of accumulated data (a time —base signal, the test number, etc.),

The system could be actuated either manually, or automatically by exceeding the preset threshold-
signal from the electrode-type bubble probe (two platinum wires pulled through capillaries and immersed
in the liquid {4]).

The temperature was measured with a direct-current microthermistor. For a systematic determina-
tion of such characteristics as the volume of vapor inclusion in the liquid, the mean density of the vapor-
water layer and of the entire contents, the volume of the vapor-water layer, etc., the authors sampled and
matched readings of the radioactive densitometer against direct measurements on photo frames correspond-
ing to the same instants of time.

On the basis of these results, the authors have derived single-parameter linear equations of the re-
gressionlines for the densitometer readings of all these characteristics (a direct systematic determination
of these characteristics off the photo frames would have been too laborious). The calculated error of these
equations was found to be within +10% at a 909 confidence level.

The results of these experiments with a uniform-over-the-volume heating of a liquid have confirmed
the occurrence of pulsating boiling modes and the feasibility of stabilizing the process, At a specific input
power of 0.35 kW /liter (total power 16 kW, height of liquid column 60 cm), for instance, intensive density
and temperature pulses were noted in 48 sec intervals, As the power was dropped, the pulse frequency in-
creased until the boiling process had stabilized. Note thatthere were alsopulses at the beginning of boiling and
the integral character of the process (its dependence on the system history),
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PARAMETERS OF INTERMOLECULAR LENNARD — JONES
(12-6), STOCKMEIER (12-6-3), 6-EXP, AND KIHAR
POTENTIALS IN DICHLORODIFLUOROME THANE

R. K, Nikul'chin and E. F. Petriman UDC 532.74

For calculating the transport properties of gases, it is necessary to know the form of intermolecular
interaction potentials,

The parameters of the following potentials have been determined from viscosity data for the gas by
the method of translating the coordinate axes.

1. The Lennard-—Jones (12-6) potential
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3. The 6-exp potential .

4, The Kibar potential

or

u(r) =4s [(;:; )12 - (,l*: :,; )6] )

where y =a/c and r* =1/g.

The values of the parameters here are listed in Table 1.

TABLE 1
Potential
Parameter 8 oy o °

B o, A T A P [} a
Lennard-Jones 223 5,42 6,07 — — —
Stockmeier 214 5,14 5,75 — 0 —
6-exp 240 6,00 6,01 — — 15
Kihar 225 5,40 6 0 — —
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TEMPERATURE FIELD AND THERMAL FLUX FIELD IN THE
HOT CATHODE OF AN ELECTRIC-ARC HEATER

A, L, Suris and S, N, Shorin UDC 536.24:537.523
The equation of steady-state heat conduction for a circular rod cathode inside a cylindrical sleeve,

with convective and radiative heat transfer taken into account as well as with internal sources and with the
temperature assumed uniform over the rod section, can be written as follows:
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where T (K) is the temperature of the rod; Ty, CK) is the temperature of the surrounding wall; P, is the
rod perimeter; P, is the wall perimeter; f is the rod section area; ¢; is the emissivity of the rod; &, is the
emissivity of the wall; A; is the radiative absorptivity of the cathode; A, is the radiative absorptivity of the
wall; A is the thermal conductivity of the rod material; I is the electric current; p is the electrical resistiv-
ity of the cathode material; ¢ €K) is the mean temperature of the gas flowing along the rod; and « is the
coefficient of heat transfer from rod to gas

o == Bx™,

If the temperature and the thermal flux at the cooled end of the cathode are known, then the initial condi-
tions can be stated as

d1 o
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The resulting Cauchy problem is solved by the Picard method of successive approximations, with the tem-
perature-dependence of the physical properties expressed as fourth-power polynomials.

The authors have obtained the following third-approximation solution:
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Expressions have been obtajned for P; —P;q4 as functions of Ty, Pj;, and the polynomial approximation factor,

It is shown that this solution is also valid for electric-arc generators with inert-gas cooled cathodes
and with a shielding tube between the cathode rod and the sleeve.

The solution can be used for estimating the potential fall at the cathode and for determining the tem-
perature fields in rods inside coaxial cylindrical chambers, if the temperature and the thermal flux at any
rod section are known,
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POWER-LAW FILTRATION FROM A SOURCE
THROUGH A POROUS HALF-SPACE

V. I. Voronin and V. V. Faleev UDC 532.546

The authors solve the problem of steady-state two-dimensional filtration through a porous half-space
with a constant pressure at the boundary. The flow from a point source is analyzed on the basis of a power-
law drag characteristic.

It is assumed, moreover, that the source with an intensity 2M lies at a point A on the symmetry
axis 0x in a uniformly porous half-space. Inasmuch as the flow pattern is symmetrical with respect to
line 0x, only the upper half of the filtration region (first quadrant) is considered here. The values of the
flow function at the boundary of this quadrant are § =1 on 0A and § = 0 on AB (B is an infinitely far point on
the 0x axis, T =—w).

With the aid of the Chaplygin transformation, the problem reduces to solving the Helmholtz equation
with mixed boundary conditions within the (—« < 7 < ©, 0 <8 = 7) region, The Fourier integral trans-
formation yields the following equation in the mapped plane:
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The boundary conditions are
Q=0 at B=0;
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The solution fo (1) with the boundary conditions (2) is
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where Q_(\, m is an unknown function. This function is determined by the Wiener — Hopf method [1]. The
final solution is

for 7> 0
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A graph has been plotted of Q_(r, ) as a function of 7, for n =1,
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NOTATION

T, B are the Chaplygin variables;

A is the Fourier parameter;

n+1 is the exponent of the power-law filtration characteristic;
Y =9/M is the dimensionless flow function;

ge=n/2vn+1; "

q=va e

I‘k =y E + 82;
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